VoyForums
[ Show ]
Support VoyForums
[ Shrink ]
VoyForums Announcement: Programming and providing support for this service has been a labor of love since 1997. We are one of the few services online who values our users' privacy, and have never sold your information. We have even fought hard to defend your privacy in legal cases; however, we've done it with almost no financial support -- paying out of pocket to continue providing the service. Due to the issues imposed on us by advertisers, we also stopped hosting most ads on the forums many years ago. We hope you appreciate our efforts.

Show your support by donating any amount. (Note: We are still technically a for-profit company, so your contribution is not tax-deductible.) PayPal Acct: Feedback:

Donate to VoyForums (PayPal):

Login ] [ Contact Forum Admin ] [ Main index ] [ Post a new message ] [ Search | Check update time | Archives: 12[3]45678910 ]


[ Next Thread | Previous Thread | Next Message | Previous Message ]

Date Posted: 13:09:42 09/02/15 Wed
Author: Pahu
Subject: Big Bang? 11



Big Bang? 11


For every charged particle in the universe, the big bang should have produced an identical particle but with the opposite electrical charge (s). (For example, the negatively charged electron’s antiparticle is the positively charged positron.) Only trivial amounts of antimatter have ever been detected, even in other galaxies (t).


s. “It is a fundamental rule of modern physics [namely, the big bang theory] that for every type of particle in nature there is a corresponding ‘antiparticle’.” Steven Weinberg, The First Three Minutes (New York: Bantam Books, Inc., 1977), p. 76.


“If the universe began in the big bang as a huge burst of energy, it should have evolved into equal parts matter and antimatter. But instead the stars and nebulae are made of protons, neutrons and electrons and not their antiparticles (their antimatter equivalents).” Kane, pp. 73–74.


“But to balance the cosmic energy books—and to avoid violating the most fundamental laws of physics—matter and antimatter should have been created [in a big bang] in exactly equal amounts. And then they should have promptly wiped each other out. Yet here we are.” Tim Folger, “Antimatter,” Discover, August 2004, p. 68.


t. “Within our galaxy, we can be confident that there are no stars of antimatter; otherwise, the pervasive interstellar medium would instigate annihilation and ensuing gamma-ray emission at a rate far in excess of that observed.... One difficulty with the idea of antigalaxies lies in maintaining their separation from galaxies. Empty space may now separate them, but in the early universe, these regions must have been in relatively close contact. Annihilation seems difficult to avoid, particularly because we now know that many regions of intergalactic space are occupied by a tenuous gas. Interaction with the gas would make annihilation inevitable in antimatter regions, with the consequent emission of observable gamma radiation.” Joseph Silk, The Big Bang (San Francisco: W. H. Freeman and Co., 1980), p. 115.


“Also, as far as we know, there is no appreciable amount of antimatter in the universe.” Weinberg, p. 88.


[From “In the Beginning” by Walt Brown ]

[ Next Thread | Previous Thread | Next Message | Previous Message ]


[ Contact Forum Admin ]


Forum timezone: GMT-8
VF Version: 3.00b, ConfDB:
Before posting please read our privacy policy.
VoyForums(tm) is a Free Service from Voyager Info-Systems.
Copyright © 1998-2019 Voyager Info-Systems. All Rights Reserved.