Show your support by donating any amount. (Note: We are still technically a for-profit company, so your
contribution is not tax-deductible.)
PayPal Acct:
Feedback:
Donate to VoyForums (PayPal):
| [ Login ] [ Contact Forum Admin ] [ Main index ] [ Post a new message ] [ Search | Check update time | Archives: 1, [2], 3, 4, 5, 6, 7, 8, 9, 10 ] |
| Subject: Thermodynamic equilibrium | |
|
Author: Anonymous |
[
Next Thread |
Previous Thread |
Next Message |
Previous Message
]
Date Posted: 16:51:48 01/21/16 Thu Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In thermodynamic equilibrium there are no net macroscopic flows of matter or of energy, either within a system or between systems. In a system in its own state of internal thermodynamic equilibrium, no macroscopic change occurs. Systems in mutual thermodynamic equilibrium are simultaneously in mutual thermal, mechanical, chemical, and radiative equilibria. Systems can be in one kind of mutual equilibrium, though not in others. In thermodynamic equilibrium, all kinds of equilibrium hold at once and indefinitely, until disturbed by a thermodynamic operation. In a macroscopic equilibrium, almost or perfectly exactly balanced microscopic exchanges occur; this is the physical explanation of the notion of macroscopic equilibrium. A thermodynamic system in its own state of internal thermodynamic equilibrium has a spatially uniform temperature. Its intensive properties, other than temperature, may be driven to spatial inhomogeneity by an unchanging long range force field imposed on it by its surroundings. In non-equilibrium systems, by contrast, there are net flows of matter or energy. If such changes can be triggered to occur in a system in which they are not already occurring, it is said to be in a metastable equilibrium. Though it is not a widely named law, it is an axiom of thermodynamics that there exist states of thermodynamic equilibrium. The second law of thermodynamics states that when a body of material starts from an equilibrium state, in which portions of it are held at different states by more or less permeable or impermeable partitions, and a thermodynamic operation removes or makes the partitions more permeable and it is isolated, then it spontaneously reaches its own new state of internal thermodynamic equilibrium, and this is accompanied by an increase in the sum of the entropies of the portions. Classical thermodynamics deals with states of dynamic equilibrium. The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized, or for which the entropy (S) is maximized, for specified conditions. One such potential is the Helmholtz free energy (A), for a system with surroundings at controlled constant temperature and volume: A = U - TS Another potential, the Gibbs free energy (G), is minimized at thermodynamic equilibrium in a system with surroundings at controlled constant temperature and pressure: G = U - TS + PV where T denotes the absolute thermodynamic temperature, P the pressure, S the entropy, V the volume, and U the internal energy of the system. Thermodynamic equilibrium is the unique stable stationary state that is approached or eventually reached as the system interacts with its surroundings over a long time. The above-mentioned potentials are mathematically constructed to be the thermodynamic quantities that are minimized under the particular conditions in the specified surroundings. Conditions for thermodynamic equilibrium For a completely isolated system, S is maximum at thermodynamic equilibrium. For a system with controlled constant temperature and volume, A is minimum at thermodynamic equilibrium. For a system with controlled constant temperature and pressure, G is minimum at thermodynamic equilibrium. The various types of equilibriums are achieved as follows: Two systems are in thermal equilibrium when their temperatures are the same. Two systems are in mechanical equilibrium when their pressures are the same. Two systems are in diffusive equilibrium when their chemical potentials are the same. All forces are balanced and there is no significant external driving force. Relation of exchange equilibrium between systems[edit] Often the surroundings of a thermodynamic system may also be regarded as another thermodynamic system. In this view, one may consider the system and its surroundings as two systems in mutual contact, with long-range forces also linking them. The enclosure of the system is the surface of contiguity or boundary between the two systems. In the thermodynamic formalism, that surface is regarded as having specific properties of permeability. For example, the surface of contiguity may be supposed to be permeable only to heat, allowing energy to transfer only as heat. Then the two systems are said to be in thermal equilibrium when the long-range forces are unchanging in time and the transfer of energy as heat between them has slowed and eventually stopped permanently; this is an example of a contact equilibrium. Other kinds of contact equilibrium are defined by other kinds of specific permeability. When two systems are in contact equilibrium with respect to a particular kind of permeability, they have common values of the intensive variable that belongs to that particular kind of permeability. Examples of such intensive variables are temperature, pressure, chemical potential. A contact equilibrium may be regarded also as an exchange equilibrium. There is a zero balance of rate of transfer of some quantity between the two systems in contact equilibrium. For example, for a wall permeable only to heat, the rates of diffusion of internal energy as heat between the two systems are equal and opposite. An adiabatic wall between the two systems is 'permeable' only to energy transferred as work; at mechanical equilibrium the rates of transfer of energy as work between them are equal and opposite. If the wall is a simple wall, then the rates of transfer of volume across it are also equal and opposite; and the pressures on either side of it are equal. If the adiabatic wall is more complicated, with a sort of leverage, having an area-ratio, then the pressures of the two systems in exchange equilibrium are in the inverse ratio of the volume exchange ratio; this keeps the zero balance of rates of transfer as work. A radiative exchange can occur between two otherwise separate systems. Radiative exchange equilibrium prevails when the two systems have the same temperature. [ Next Thread | Previous Thread | Next Message | Previous Message ] |